Bayesian Statistical Analysis and Frequentist Analysis in top statistics

Reinhard Schwienhorst

Outline

- Introduction: Frequentist vs Bayesian
- Bayesian analysis
 - Posterior
 - Systematic uncertainties
- Frequentist analysis
 - Ensemble testing
- top_statistics
- Final comments

Introduction

- Physics experiments are usually out to
 - Discover something
 - Find *events* that cannot be explained by the standard model
 - Find a few events above a background
 - Statistics of small numbers
 - Measure something very precisely
 - Analyze many events in detail
 - Have very good control over the experiment
 - Systematic uncertainty

Typical Problem

- Search for events generated in some process
- The number of predicted events is given by

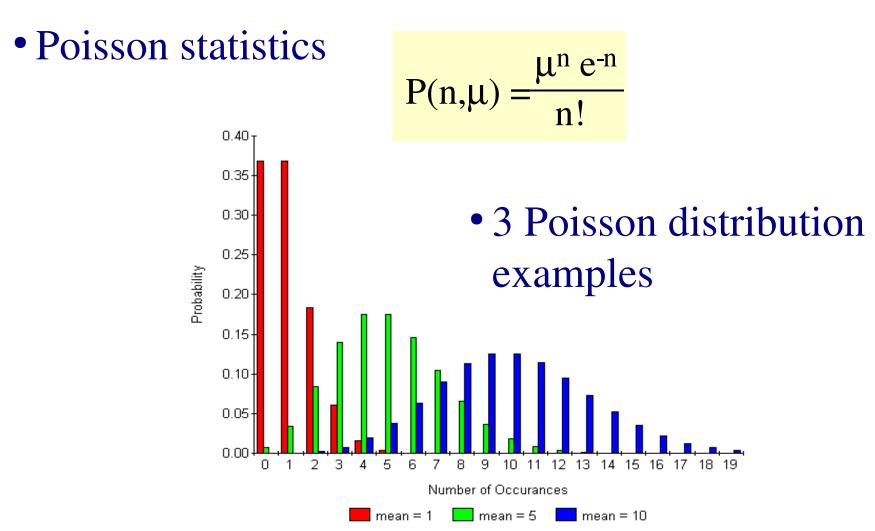
$$n_{pred} = acc \times lumi \times XS + n_{bkg}$$

where:

- acc: signal acceptance, fixed and known
- lumi: integrated luminosity, fixed and known
- n_{bg}: the number of background events due to ordinary SM processes, fixed and known
- The experiment tries to determine the cross section XS by relating n_{pred} to the observed events n_{obs}
- Usually either a measurement ± 1 sigma or a 90% confidence interval is given

Probability everyone can agree on

• Given a known predicted yield $\mu=n_{pred}$, what is the probability to observe count $n=n_{obs}$ in data?

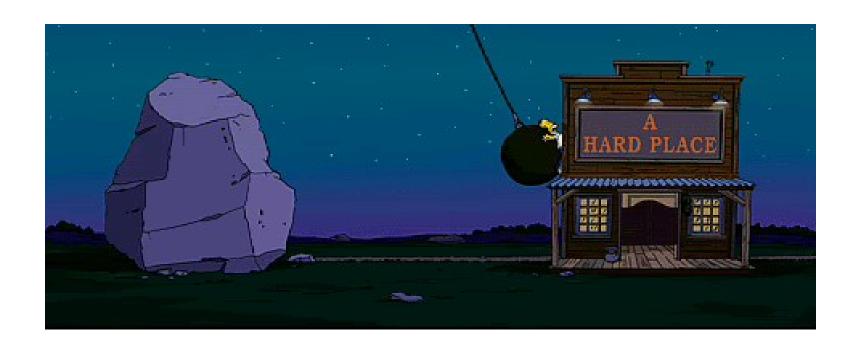


Reinhard Schwienhorst, Michigan State

5

But what if I don't know the cross section and cannot predict the yield but want to determine it from the observed count?

Frequentist vs Bayesian statistics



Statistics Philosophies

Probability is:

Frequentist

• The limiting relative frequency of a certain outcome:

 $P(A) = \lim_{n \to \infty} \frac{\text{# of outcome A}}{n}$

- True values can never be determined precisely
- Includes several assumptions
 - Experiment is repeatable,
 parameters don't change, each
 measurement has the same
 probability, ...

Bayesian

• Subjective:

$$P(A) = \frac{\text{degree of belief that}}{\text{hypothesis A is true}}$$

- Intuitive definition
- Degree of belief in a measurement
- Depends on degree of belief in underlying theory

What is a 90% confidence interval?

Frequentist

- If I repeat an experiment many times (and create a confidence interval in each experiment), the true value μ_t will lie inside the interval 90% of the time.
- Statement about many (hypothetical) experiments
- We (Physicists) like to argue in Frequentist terms

We try to convince others in Frequentist language

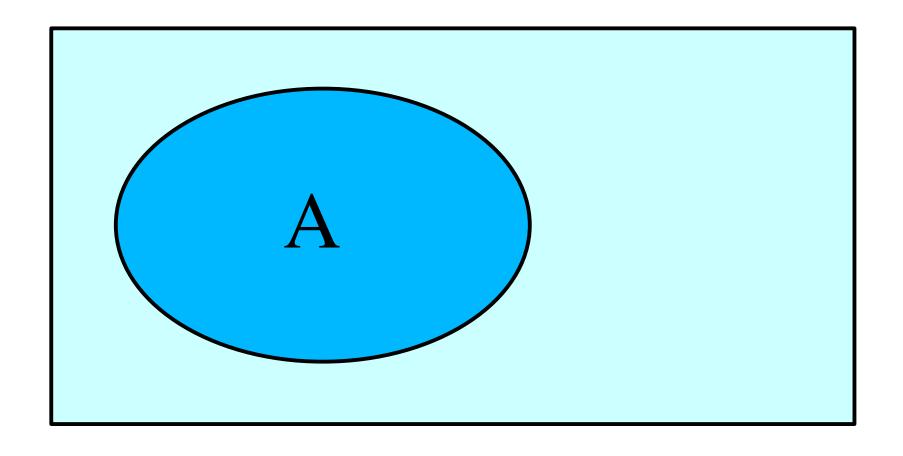
Bayesian

- If I determine a 90% confidence level interval in a single experiment, 90% of the possible values for the true value μ_t lie inside the Bayesian interval.
- Statement about the true value
- We (Physicists) like to think and feel in Bayesian terms

We form our own opinion with Bayesian intuition

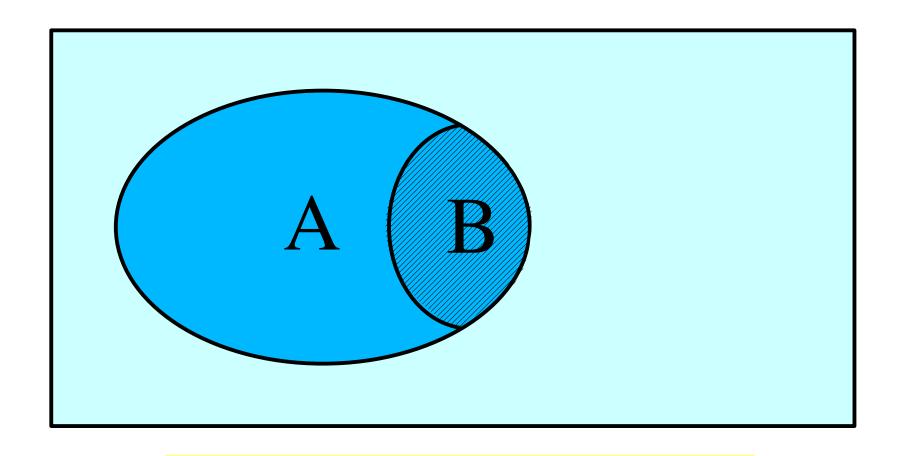
Bayesian Analysis

Simple probability



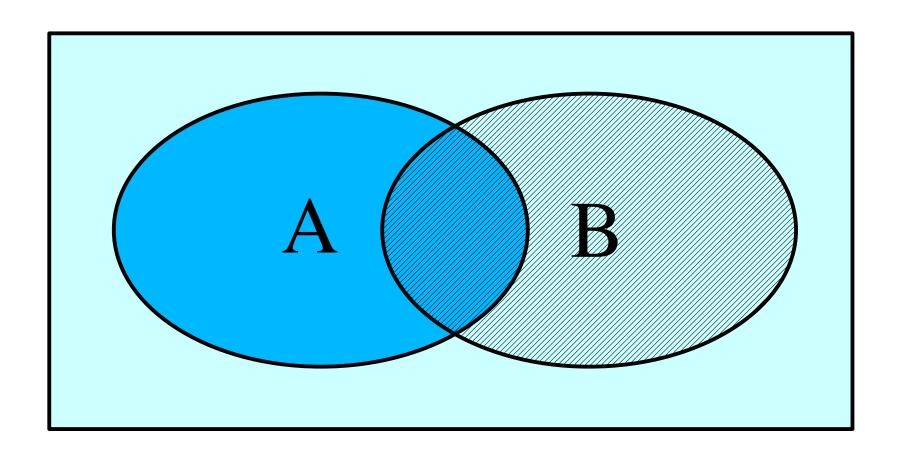
P(A): Probability that A is true

Conditional probability



P(B|A): conditional probability for B, given that A is true.

Bayes Theorem



$$P(B|A) = \frac{P(A|B) \times P(B)}{P(A)}$$

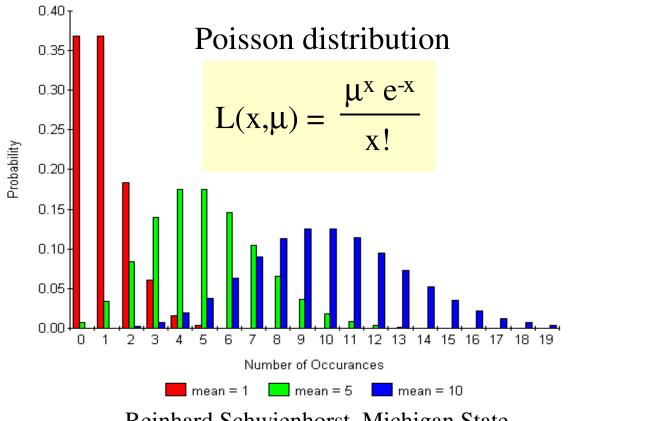
$$P(n_{\text{pred}} \mid n_{\text{obs}}) = \frac{P(n_{\text{obs}} \mid n_{\text{pred}}) \times P(n_{\text{pred}})}{P(n_{\text{obs}})}$$

- For us: $n_{pred} = bkg sum + acc \times lumi \times XS$
- If signal and data are distributed over multiple channels, take product of likelihoods in all channels

$$P_{tot} = \prod P(n_{pred}^{i} | n_{obs}^{i})$$

$$P(n_{pred} \mid n_{obs}) = \frac{P(n_{obs} \mid n_{pred}) \times P(n_{pred})}{P(n_{obs})}$$
"Posterior probability"

Likelihood



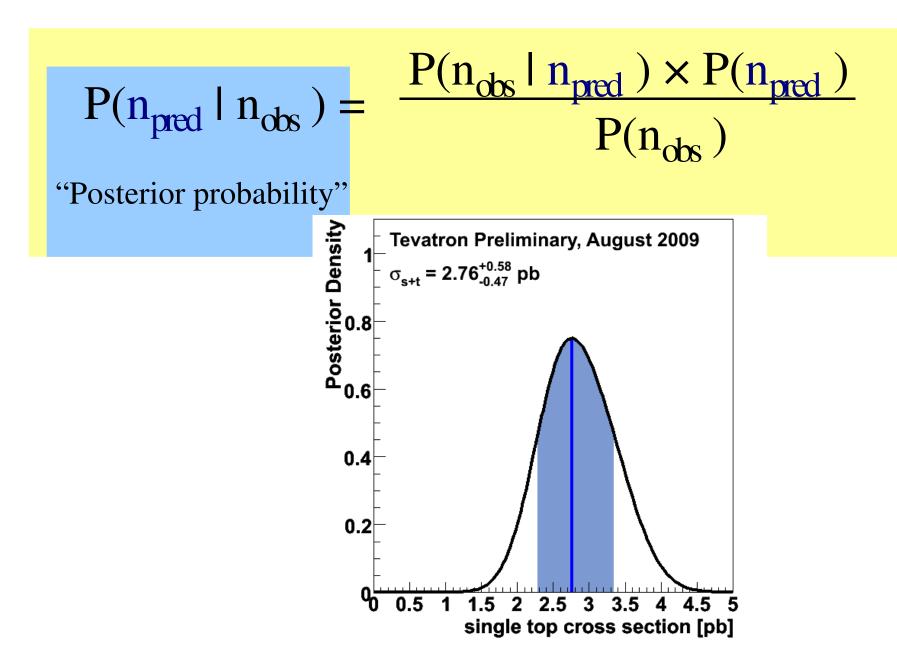
$$P(n_{pred} \mid n_{obs}) = \begin{array}{c} P(n_{obs} \mid n_{pred}) \times P(n_{pred}) \\ P(n_{obs}) \end{array}$$
"Posterior probability"

Likelihood Normalization factor probability"

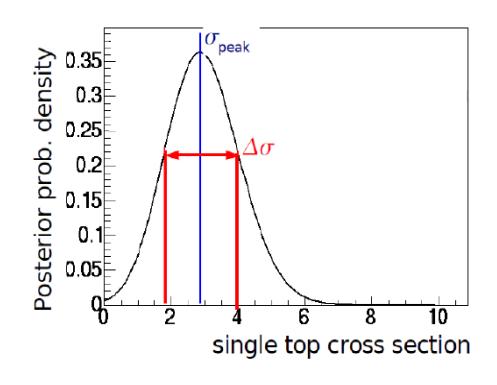
- Much discussion about the prior in statistics
 - Often choice is not clear
 - For example Vtb is proportional to sqrt(XS), different result if prior is flat in Vtb or in XS
 - Usually goal is "uninformed prior"
 - For us the choice is always prior flat in cross section

$$P(n_{pred} \mid n_{obs}) = \begin{array}{c} P(n_{obs} \mid n_{pred}) \times P(n_{pred}) \\ P(n_{obs}) \end{array}$$
"Posterior probability"

Likelihood Normalization factor probability"



- Cross section (posterior peak)
- Cross section uncertainty (68% error band)
- 90% confidence level limit (integral from left)



$$\mu = n_{pred} = acc \times lumi \times XS + n_{bkg}$$

- Nobs = 10, $n_{bkg} = 7.5$, acc × lumi = 0.5/pb - i.e. naively expect cross section of 5pb
- Compute Bayesian posterior for XS using simple spreadsheet

$$P(Nobs, \mu) = \frac{\mu^{Nobs} e^{-Nobs}}{Nobs!}$$

- Prior for XS is flat in XS
- Neglect posterior normalization

$$\mu = n_{pred} = acc \times lumi \times XS + n_{bkg}$$

Nobs=10	Nbkg=7.5	acc*lumi=0.5/pb		
XS [pb]	μ	$P(Nobsl\mu)$		
0	7.5	0.09		
1	8	0.1		
2	8.5	0.11		
3	9	0.12		
4	9.5	0.12		
5	10	0.13		
6	10.5	0.12		
7	11	0.12		
8	11.5	0.11		
9	12	0.1		
10	12.5	0.1		

Nobs=10	Nbkg=7.5	acc*lumi=0.5/	ob .			
XS [pb]	μ	P(Nobslµ)	0.44			
0	7.5	0.09	0.14			
1	8	0.1				
2	8.5	0.11	<u>등</u> 0.08 -			
3	9	0.12	0.06			
4	9.5	0.12	0.08 0.06 0.04 0.04 0.02			
5	10	0.13	0			
6	10.5	0.12	0 2			
7	11	0.12		XS [pb]		
8	11.5	0.11				
9	12	0.1				
10	12.5	0.1				

Simple Bayesian example in top statistics

In climit.cpp, likelihood_generic:

```
long double y=1;
for(int ichannel = nChannels-1; ichannel >= 0; --ichannel) {
   double m = nobs[ichannel]; // Observed count for ichannel
   double s = bkg[ichannel]; // Sum for total yield in any bin
   // Add signal
   s += accL[ichannel]*x; // x = cross-section
   // evaluate the poisson
   long double val = poisson(m, s);
   // Compute product over bins
   if(val>=0.) y *= val;
return y;
```

- Multiple channel: likelihood is product over all channel
- Plus checks for invalid input numbers, y getting smaller than long double limit, etc.

Including systematic uncertainties

• Including systematics: Integrate over systematics

$$P(n_{\text{pred}} \mid n_{\text{obs}}) = \iint_{\text{sys}} \frac{P(n_{\text{obs}} \mid n_{\text{pred}}, \text{sys}) \times P(XS) \times P(\text{sys})}{P(n_{\text{obs}})}$$

- P(sys) is a Gaussian
- Systematics either global or per channel
- Protect against "crazy" systematics
 - That are far above nominal or go below 0 yield (truncate)
- Integration using Monte Carlo sampling
 - anywhere from 2k NSamples to 1M NSamples
 - Re-draw iSample if too many bins go to 0

Systematic uncertainty integration

• Generate systematic shifts in limit_base:

```
for(NSamples systematics samples) {
  for(systematics names) {
    val = myrandom.Gaus(); // random shift for each systematic name
    sysshift[sys name] = val;
  }
}
Fill background sum for each systematic sample in
  input.cpp, input::AddSysShiftedValue():
  for(bins) {
```

```
imput.cpp, input..AddsysSimted value().
for(bins) {
  for(systematics names) {
    diff = shift*(_syst[sysname].getValuesPlus()[ibin]-value0);
    if(shift<0.) diff = shift*(value0-_syst[sysname].getValuesMinus()[ibin]);
  }
  bin_value += diff;
}</pre>
```

• Plus lognormal distribution, many checks of inputs and outputs

Reinhard Schwienhorst, Michigan State

Systematic uncertainty integration

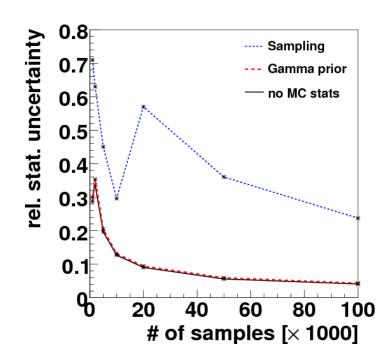
- Systematics posterior is actually sum of individual posteriors from each iSample
- Determine posterior for each systematic sample in limit_bayesian: for(NSamples systematics samples) {
 for(XS point) {
 val = likelihood_generic(Nobs,sys_bkg[iSample],accL[iSample],XS);
 F[XS] += val; // later in the code
 }
- Each of the inputs is an array containing all bins
- Actual code is more complex, has more loops than this, lots of checking of inputs and outputs going on, plus histogram filling
- Plus: First quick evaluation of posterior at only a few points, then full posterior evaluation only for those iSample that have large posterior integral estimate
- Then normalize the posterior sum to unit area later when analyzing posterior

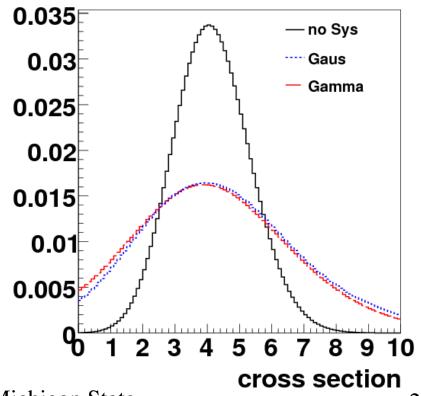
 Reinhard Schwienhorst, Michigan State

Special systematic:

MC statistics uncertainty

- Integration of MC statistics requires large number of samples
- Instead, integrate MC statistics uncertainty analytically
 - Using Gamma prior instead of Gaussian prior
 - Introduces slight bias
 - No problem as long as MC statistics uncertainty is small contribution
- Special sys name: Mcstats
- Integration in poisson_gamma in climit.cpp

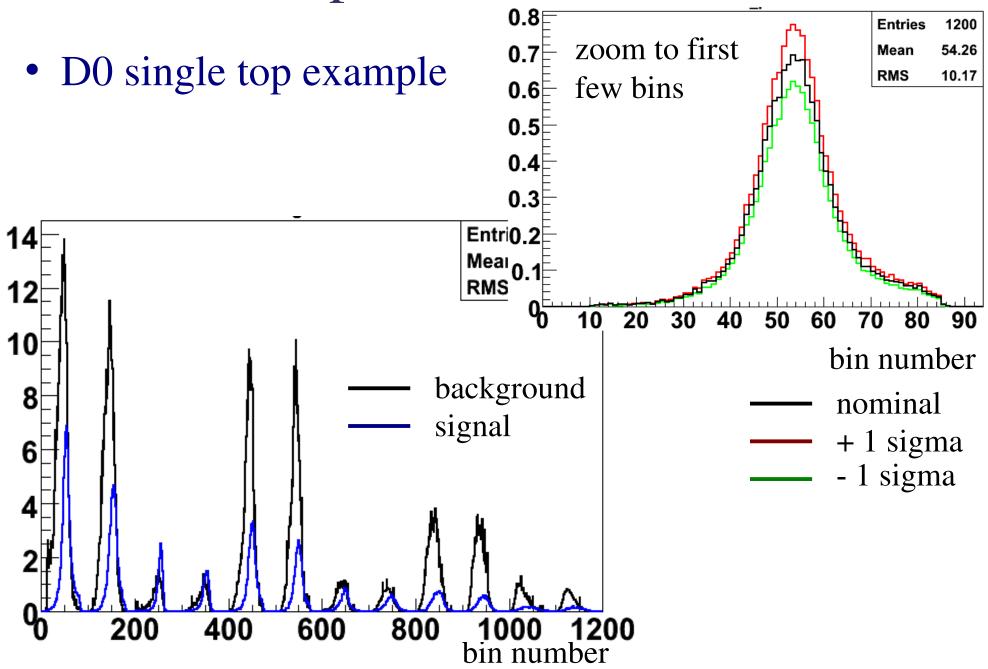




Debug/Info histograms

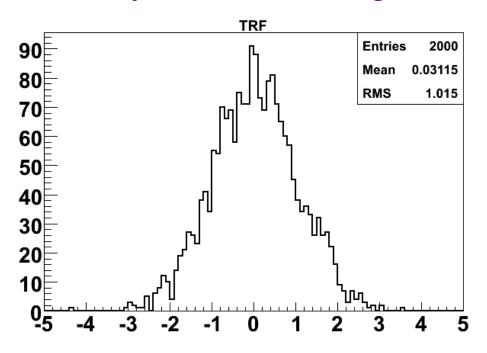
- Output to screen
 - Program progress
 - Cross section measurement
 - limit
- Histograms and plots in root file
- Background sum and acc*L for all bins as used
 - Including systematic uncertainties, added in quadrature
- Distribution of Gaussian random numbers for each systematic name
- Posterior with peak position and uncertainty
 - Can also do 2d posterior in case of 2 signals
- Systematics posterior

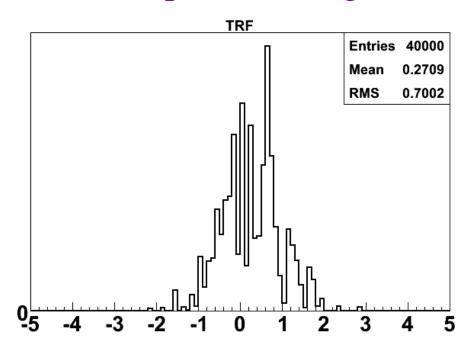
Input distribution



Systematic uncertainties

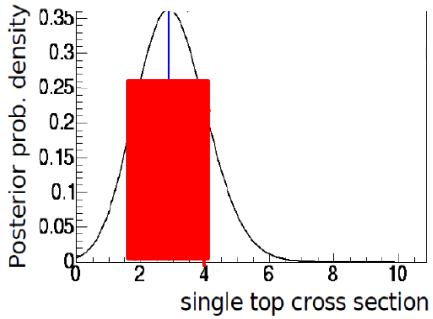
- Integration over systematics is done by sampling from Gaussian distribution, then summing
 - Shown on left
- Rather than summing, histogram this systematic, with posterior weights
 - Systematics histogram, integrated over posterior (right)





Bayes factor, Bayes ratio

- We can get an equivalent of a significance out of the Bayesian posterior
 - Bayes factor: Integral over peak region divided by 0signal
 - Need to specify in input
 what area to integrate over
 - Signal.XSSignal.XS.Error
- Alternative: Bayes factor
 - Peak height over 0-XS height
- Interpret these as p-value single top cross equivalent, then take TMath::NormQuantile(1-p)
- Not widely used, no clear interpretation



Frequentist Analysis

Frequentist statistics

- Only statements about true value, not measured
 - What if I had repeated the experiment many times?
- In top_statistics, done through ensemble testing:
 - How does this actual data experiment compare with ensembles of pseudo-data?
- Ensemble of background-only pseudo-datasets
 - Generate ~∞ # of background-only pseudo-datasets
- Compute log-likelihood ratio for each pseudo-dataset
- Count how many background-only pseudo-datasets have LLR ≥ data
 - Or ≥ mean of a sig+bkg ensemble

Ensemble generation

- Read in sources and bins and channels exactly as for Bayesian limit setting
- Sample from systematic uncertainties
 - Same code/procedure as MC integration
- Then calculate background sum in each channel for this particular set of systematic shifts
- Then draw random Poisson number for this background sum in this channel
 - Or for background+signal if required
- Store bin counts in text file, one line per pseudodataset

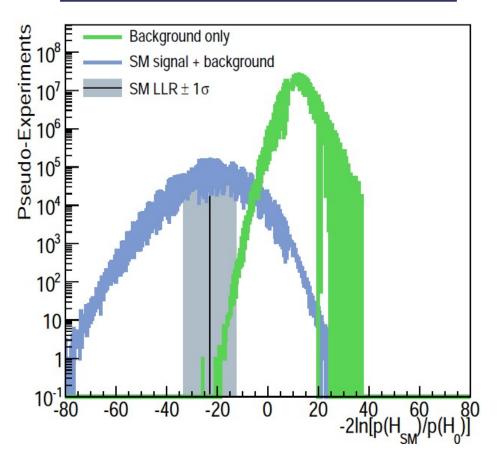
Log-likelihood ratio

- Use Bayesian code to calculate log-likelihood ratio significance
 - LLR, also used in all Tevatron Higgs analyses
- Procedure: generate pseudo-datasets, calculate LLR value for each:
 - Compare null hypothesis (H_0 , background only) and alternative hypothesis (H_1 or H_{SM} , signal+background)
 - Compute likelihood of observing background-only $p(H_0)$ and of observing SM signal + background $p(H_{SM})$
 - Likelihood is again just Poisson probability $p(H_0) = Poisson(n_{obs} | n_{bkg})$ $p(H_{SM}) = Poisson(n_{obs} | SM \text{ signal} + n_{bkg})$
 - Form test statistic LLR = -2 $ln[p(H_{SM})/p(H_0)]$

LLR in practice

- LLR = $-2 \ln[p(H_{SM}) / p(H_0)]$
- If no systematics:
 - $p(H_0) = Poisson(data | background only)$
 - $p(H_{SM}) = Poisson(data | signal + background)$
- With systematics:
 - Integrate over systematics Bayesian style to compute both p's
- Store Poisson values in array to speed up code
 - Need to evaluate LLR for millions of pseudo-dataset
- p-value is fraction of bkg-only pseudo-datasets with LLR value smaller than SM peak
- Convert to Gaussian significance using TMath::NormQuantile(1-p)

LLR distribution



 p-value as probability to observe LLR value seen in data or something more extreme (lower)

top statistics details

Limit setting code

- Code developed for D0 single top analysis by Harrison Prosper, Supriya Jain, Brigitte Vachon, RS
 - Underlying Bayesian analysis by Harrison Prosper
 - Contributions by Gordon Watts, Dag Gillberg, Aran Garcia-Bellido, Benoit Clement and others
 - Original version developed for first single top analysis in 2004
 - Now also used for Tevatron combination
- Ported to ATLAS by RS

Code structure

- C++ user interface
 - limit_bayesian
- Configuration files using root TEnv
- Underlying Bayesian likelihood calculation in C
 climit.cpp
- Ensemble generation in ensemblemaker
- Reading in of histograms in limit_base
- Executables for each specific analysis
 - Can do multiple evaluations in one executable
 - Example: ensemble testing: generate, then loop over thousands of pseudo-datasets

Program flow

1)Instantiate limit_bayesian object

• Set cross section axis, debug flags, Nsamples

2)Read input channels

- Channel-by-channel
- For each channel, read list of inputs
 - data, then backgrounds, then signal
 - For each, nominal histogram, then systematics
- In BDT_helpers.hpp

3)Initialize input distribution

- Convert channels to long input histogram
- Generate systematics samples
- In limit_base

4) Determine Posterior

- In limit_bayesian, many calls to climit.cpp
- 5) Analyze posterior (cross section, limit, histograms, ...)

Additional macros

- Posterior plot for publications and talks
 - 1d, 2d, with peak position, uncertainty, limit, etc
 - Vtb evaluation (taking square root of XS)
- BLUE combination
 - Generation of pseudo-datasets correlated between multiple analysis methods
 - Analysis of the resulting cross sections
- LLR plots

Conclusions

- Bayesian and Frequentist statistics both are useful for certain questions
 - All systematic uncertainties are treated in Bayesian fashion
 - Significance well defined using Frequentist statistics
- top_statistics provides statistical analysis tools
 - Bayesian posteriors
 - Tools to analyze them, measure cross sections and set limits
 - Frequentist ensemble testing
 - Macros for pretty plots
- If you need another tool or have a question, let me know!